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PREFACE

This report is part of a Rand study for NASA on the technology of
communications satellites. It specifically concerns adaptive array
antennas that appear to offer attractive solutions to the problems of
operating earth receiving antennas which must share spectrum use with
terrestrial services producing strong interfering signals. The earth
receiving antennas continually adjust or adapt their patterns to pro-
vide the best discrimination in favor of the wanted signal from the
satellites. If the interfering signals are changing, or if the earth
antenna is changing in orientation or location, it is important for
the adaptive system to have an appropriate response--or behavior with

time, which is the subject of this report.
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SUMMARY

The performance of two adaptive array schemes is analyzed. 1In
scheme A the desired signal is specified by a beam—forming vector,
in scheme W by a known pilot signal. In a stationary interference
environment, if loop gains are high enough and the effective time
constants are long enough, the weights in both systems will converge
to values for which the output signal-to~interference ratio is maximum.
One result of the analysis is a criterion for choosing loop gain and
time constants which should be useful in designing an AGC system, a
practical necessity for both schemes. The A scheme converges somewhat
more rapidly than the W scheme when parameters are adjusted for the
same asymptotic performance. For the A scheme, the ocutput signal-to-
interference enhancement history during adaptation is found under the
assumption that smoothing is sufficient to make weight fluctuations
small and slow. For the W scheme, settling time varies inversely with
pilot-to-interference power ratio, Digital simulation experiments
confirm the analysis. The results presented in this report are for

the narrow-band case.
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I. PROBLEM BACKGROUND

There are c¢ channels, each delivering an output composed of a
desired signal, a random channel noise, and interference from undesired
signals. A scheme is required which automatically forms that weighted
average of the channel signals for which the output signal-to-interfer-—
ence ratio is a maximum. The required optimum weights are easily
derived,(l) but some notation and definitions are needed to express the
results.

All signals are represented as complex numbers. These may be
viewed as in-phase and quadrature components of band-pass sisp:”
relative to some nominal carrier frequency. Let the relative magni-
tudes and phases of the components of the desired signal in the c
channels be embodied in a row vector r = (rl, seas rc). These rela-
tive amplitudes and phases are assumed to be constant. If the channels
are the outputs of ¢ identical antenna elements, then all r, have the
same magnitude, which may be made 1 by using this common level to

establish the unit of power. In this case each r, = exp(iwj), where

the phase angles wj are computable from array andjsignal geometry and
cable transmission delays.

Let w = (wl, sos g wc) be a row vector of complex components and
let u = (ul, cesy uc) be the vector of channel outputs with the desired
signal absent. The system output is defined by

g = uw* s )

where * applied to any matrix denotes its conjugate transpose. For a
fictitious, and absent, desired signal of unit envelope power the cor-
responding signal output power is

S = Irw*|2 . (2)

while the output interference+ power is

+It is really noise plus interference. The abbreviation seems less
clumsy and should cause no confusion.



I = E{g7B} = wE{u ulw = it (3)

which defines the interference covariance matrix M.

From Ref. 1, the optimum weights are given by
Mw =1 , (4)

and the resulting optimum output S/I is

*
wMw

*,2
-i— = -I&L_ = rM—lr* (5)

From the same reference (Chap. X, Sect. 7) it follows that Eq. (5) is
the unique maximum of S/I.

In this report two analog schemes for solving Eq. (4) continuously
(2) (3)  Main emphasis falls
on A and the problem is to investigate the action during the process of

are examined: the A scheme and the W scheme.

adaptation. A particular goal is to predict the time needed to get

close to equilibrium for any given array and interference configuration.



I1. THE A SCHEME AND ITS EQUATIONS

Consider this block diagram:

.

i
|
1
u —] -8
|
]

Solid links denote c channels. The dashed link is a single channel
containing the output, 8. The is intended to suggest that a sum
of products ig formed, namely R = uw*, In <::>each input channel
quantity, u*, is multiplied by 8. The * indicates that u* is to be
uged. The box S contains c identical smoothing filters.

From ingpection of the diagram, the weight vector w satisfies

w* = g[r* - S(u*uw*)]. (6)

*
It is no loss of generality to assume that for any constant vector, r ,

This says only that the smoothing filters pass constant inputs (the
carrier frequency) unchanged and with unity gain. A set of practical
time-invariant filters is representable by

st=1+ a,d/dt + ... akdk/dtk, )



with constant coefficients, a.s for the single time constant filter

st =1 + td/dt. (8)

It follows that Eq. (6) is equivalent to

-1 -1 * * x %
lS lw =r - uuw . 9)

The weight vector at any instant has an expected value which will
be written 5*. Throughout this report it is assumed that the smoothing
is sufficient to reduce the fluctuations of w to values small relative
to w itself. Under this assumption a good approximation for the result
of taking expected values of both sides of Eq. (9) is

-] -] * -k
g lS lw =r - Mw. (10)

Equation (10) describes the mean drift of the weights and, if the
weight fluctuations are small, it closely describes the trajectory of
the weights during the adaptation process. If M remains fixed, Eq. (10)
may be used to deduce the asymptotic equilibrium value for w. Let
t > =, We expect all derivatives o% W to tend to zero; hence the
eventual equilibrium w satisfies (t = =):

~1-% % -k
g w =1 - Mw. (11)

Clearly, for sufficiently high g, Eq. (11) provides a good approxi-
mation to Eq. (4), so that the A scheme is capable of getting as near
to ideal performance as desired. There is no obvious direct way to
discover what g is required for any given M (i.e., for any given array
and interference environment); however, g can be chosen, Eq. (11) solved
for ;, and then the resulting w evaluated by substituting in Egqs. (2)
and (3) to find S/I.



I1I. WEIGHT DRIFT AND ACTIVITY IN NORMAL CHANNELS: SCHEME A

From its form in an expression for real power, M is Hermitian.
Furthermore, since channel noise never vanishes, M is positive definite.
A unitary transformation P and a set of positive characteristic numbers

ki therefore exist for which
%
PMP = A= diag{kl9 anoey Ac}.

The transformation P permits the introduction of normal coordinates.
. -1
The constant linear transformation, P, clearly commutes with S ~;

hence, introducing
q=rP y = wP (12)

reduces Eq. (10) to

B T, % —%
g Sy =q -Ay , (13)

which is a set of ¢ independent equations. For the single time constant
filter Eq. (8), the solution of Eq. (13) is trivial once the initial con-
ditions are chosen. Suppose the interference environment is established
and then the scheme is turned on with filters initially empty. Then

§(p) = gq, from the block diagram, and the solution for each component

of Eq. (13) is

~(14gr )t

g4, —_—

1

- ) .
¥4 (E) Treh,

1+ gkie . (14)

The asymptotic value of §i is ;i(w) = gqi/(l+g)\i)e
Let the input vector, u, also be transformed into v = uP, along
with the transformations (12); then the basic equation (9) becomes

-1 -1 % ] * %
g Sy =q -vvy (15)



The transformed input processes, v, now have the diagonal covariance
matrix, A, and are uncorrelated. The envelope power stimulating the

ith normal channel is

Y
E{v,v,} =2,
Two practical interference regimes may be distinguished. 1In the
first there are fewer independent interferers, say n, than channels
and only the presence of a small channel noise component keeps M non-
singular. The total input envelope powers in the two coordinate systems,
namely trace (M) and trace (A) = I Ai, are the same. If the channel
noises were set equal to zero, the ranks of M and A would become n < ¢
and the total powers would represent only the interference. For small
channel noise powers tending to zero, n of the Ai differ negligibly
from their values for zero channel noise, while the remaining ¢ - n
values of Ai tend to zero.

From Eq. (14), the effective time constant in the ith channel is
T/(l+gAi); thus one might expect the settling time of the system to

be determined by the smallest A For the case under consideration,

r
n < ¢, this would be an error. To see this, compare the values of

§i(°) and ;i(m)° For ), near zero they are nearly the same; thus,

even though the effecti\fe time constant is only the relatively big =t

of the smoothing filters, the associated normal weights, Yis undergo
negligible average change duvxing adaptation. In the normal coordinate
system these will be referred to as the 'noise” weights, noise charac-
teristic values,; noise channels, etc. The noise weights vary relatively
slowly but by a negligible amount; hence they ultimately have no prac-
tical effect on the settling time at all, at least so far as concerns
the mean weight drift. To finish this argument it is only necessary to
demonstrate that the noise weights also have a negligibly small fluctua-
tion about their mean drift. A detailed argument is given later; how~-
ever, the conclusion is obvious if one recalls that Ai = E{v:vi} is the
envelope power in the ith normal channel. The noise channels thus have
relatively negligible input power and their activity will be corres-

pondingly negligible.



The other practical regime is characterized by a covariance matrix
that would have full rank c even if there were no channel noise. This
is true if there are at least as many independent* interferers as
there are adaptive channels. For this case there are no tiny noise
characteristic numbers, although particular interference configurations
can lead to a wide range of Ai. Even in this case, however, the argu-
ments above suggest that the settling time of the system is not mainly

determined by the smallest A, but by some (admittedly undemocratic)

function of all of them. Iniparticular, since a small Ai corresponds
to a normal channel with less input power, its influence should be
correspondingly less. The relative contributions are evaluated in the
next section.

The results just obtained are not peculiar to the gingle resonator
smoother. For higher order filters the same arguments apply: activity
in the ith channel varies with the input power, Xi’ to the channel.

The total drift of the mean weight, yi(t), between its initial and
asymptotic values will be small, even though slow, for one of the noise
channels in the first regime.

For higher order filters (Eq. (7)), Eq. (13) beccmes

a5 a, dy g4
(:kx) ki+ oo ¥ (l+lA ) dti+;i= 1+§ (16)
8447 ac BAy B

If the filters are regarded as initially empty, the .trajectories of the
mean weights, §i’ after turn~on can be found in various tables of Laplace
transforms. Input (right-hand side) is a step of magnitude gqi/(l+gki)
and one wants the inverse transform of s_l[l + als/(1+gxi) + ...+

2 8/ 1+ )1,

%
N sources strung along a ray from the origin and emitting statis~-

tically independent signals are equivalent to a single such source of
the same total power.



IV. WEIGHT FLUCTUATIONS AND S/I HISTORY DURING ADAPTATION: SCHEME A

Define the fluctuation component, X5 of the normal weight, Yy by

The ensemble average output interference component at any instant is

N(t) =y Ay + £ A, E{|x |“}. (17)
. i i
i=1
The history of the first term of N(t) during adaptation follows from
Eq. (14) or a solution to Eq. (13) in the case of higher order filters.
A derivation for the second term of Eq. (17) begins with the con-
jugate of the difference of Eqs. (15) and (13), namely

“ig71 A,y E *
g X, = y, = v v,y
i 171 i k=1 kk
or
(g—lS_l+A ) ; * (18)

A)x, = —v V.V, —~ 8.Y¥,

1771 i - k'k i1
where

_ *
si = vivi - Ai o

Equation (18) exhibits x; as the output of a filter whose input (right-
hand side) has a much more rapid fluctuation, due to the factors v and
. The factors v and

i
8 fluctuate rapidly about zero, while the yj have in practical applica-

g, than the weights, ;ig or their fluctuations, x

tion a comparatively slow and small fluctuation about their means, §ja
The right-hand side of Eq. (18) may therefore be approximated by replac-
ing yj by §js The resulting approximation

-1

g st

%
A )X, ==-v, I v.y - 8.V, (19)
i’vi i ki k'k i'i



is valid as long as

2 - 2
<
E{Ixil } << Iyil . (20)
Now assume that the input processes v, are all Gaussian. The
fact that the v, are uncorrelated then implies that they are indepen-

i
dent and hence that the terms on the right-hand side of Eq. (19) are

uncorrelated. For example, E{v v s, } 0 because v.s, and vk are

independent and have mean zero. Therefore the input power is the sum

%
of the powers of the separate terms. The power of v, v is

117k
-2 2
15,17 Blv, 12 lv %) = 15,02
For a Gaussian vi

2 2
E{Isil } = Ay s
hence the total power on the right-hand side of Eq. (19) is

P = A, Z A
in i k=1

AL (21)

For single time constant filters, S.-1 = 1 + td/dt, and the operator
on the left side of Eq. (19) is equivalent to

1+ gAi L . 4
1+ gki def °*

g

which is a combination of a gain factor and smoothing with effective

time constant

°

i T +ghr
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If a series of independent pulses with mean zero and power Pin is
smoothed with time constant T (measured in pulses), then the output
power is Pout = Pin/(Zri). If we assume, for the adaptive scheme,
that t represents the filter time constants in units of independent
input pulse times, then we may apply this result to Eq. (19). 1In an
analog realization, the effective number of samples averaged, replacing
211, is the ratio of input bandwidth to smoothing filter bandwidth.
In a digital realization, the effective number of samples averaged is
the actual number of samples averaged, as long as the sampling fre-
quency does not exceed twice the input bandwidth. If the sampling
frequency is higher, in a digital realization the effective number of
samples averaged is the actual number averaged times twice the input
bandwidth divided by the sampling frequency. Taking the gain factor
into account as well, we have

2
Xi

c
2 -2
E{|x | } = ;mr—— I A [y ] . (22)
i 2t (1 + gxi) k=1 kk
If Eqs. (22) and (17) are now combined, the result for single time

constant smoothing is
SR
N(t) = yAy [1 + E] , (23)

where (1 + g\ )t 2
2 - i
- % 2 © kiiqi‘ 1
yAY =g” I ———— |1+g) e (24)
i=1 (1 + gAi)

is the interference output power that would be produced during adapta-
tion 'if the weights simply followed their mean drift exactly, and
2,2

c g Ai

E= I ————— (25)
i=1 21(1 + gki)

is the average fractional excess output interference power that can be

expected due to the slow fluctuations in the weights.
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* %2
The signal output power is S = A2 = |wr |” = |yq |“. 1Its expected

variation during adaptation follows from Eq. (14) and is

L ¢

z |a,
i=1 T

l+gki exp[—t(l+gli)/T] 2
1+ gki

s(t) = g2 |2 . (26)

Two important special points on the trajectory Eq. (26) are

c 2
2 2 2 2
s() =g | = |q,] =g'c
=1
and
2 2
2| ¢ |94 2
S(») = g z ‘jl_-_}-_g—)l\_ = A" (=) .
i=1 i

Equation (23) follows from the facts that rr* = ¢ and P is unitary.

Equations (26) and (24) provide the expected behavior of signal
and interference outputs during adaptation, while Eqs. (23) and (25)
indicate how much the output interference may fluctuaté due to the
finite smoothing times.

It is interesting to note that the fractional excess, E, is inde-
pendent of time and involves only g, T, and the A . Also note that
E{[X [ }, and hence E, have been computed on the assumption (Eq. (20))
that the weight fluctuations are small compared to the weights them—
selves. In an application it will presumably also be wished that the
slow fluctuations in output interference power stay small compared to
the asymptotic average output interference power. This will be the
case if E is kept reasonably below 1. In Section VI E is used to
determine suitable bounds on g and T.

These results also complete the verification of the observation,
in the preceding section, that the effects of the ''moise'" channels

are negligible during adaptation.
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V. ILLUSTRATIVE CASES: SCHEME A

A digital simulation of several cases confirms the preceding
results. In this simulation all sources emit complex random numbers
distributed over a square centered at the origin and parallel to the
axes. The sizes of the squares are set so each source produces the
specified envelope power. Such sources are far from Gaussian; how-
ever, gince the scheme depends only on sums and products of signals,
it should suffice to match source powers to those in the theoretical
calculations. The experiments bear this out.

For all of the following cases the interference comes from five
sources at azimuths 0, 72, 144, 216, and 288 deg and angles down from
zenith of 91.25, 87.5, 93.75, 85, and 90 deg, respectively. The
desired source is at the zenith. Each interfering source has unit
For cases EG5A, EF5A, and ED5A the noise power is 10—5 per
channel, the gain is 1000, and the filter time constants are 150,000.

For the case DD4 the values are 10'6, 10,000, and 1,500,000.

power.

CASE EG5A

There are six elements equally spaced on a circle of radius 0.5

wavelength plus a seventh element at the center of the circle. The
parameters for the normal channels are summarized in Table 1.
Table 1
NORMAL PARAMETERS FOR CASE EG5A
. 2 2 2
i A TS g, N(o) /g~ | N(=)/g" | A(=)/g
1 14.1 11 0.000008 | 0.000116 0.000000
2 8.4 18 0.202 1.69 0.000024
3 7.7 19 0.223 1.71 <10°® {0.000029
4 2.69 56 0.000002 | 0.000006 0.000000
5 2.06 73 0.000003 | 0.000006 0.000000
6 10.000011 148,000 3.42 0.000036 |0.000036 3.39
7 10.000010 148,000 3.15 0.000032 10.000031 3,12
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Table 1 illustrates and confirms the assertions about noise
channels for the case when there are more channels than independent
sources of interference. The heading T denotes the effective time

constants

T

1" T¥ar, @7

T

The initial contributions to output noise (interference) come mainly
from normal channels 2 and 3, while the ultimate output noise comes
mainly from the noise channels 6 and 7. Notice that, as expected,
the contributions from the noise channels remain virtually unchanged
by the adaptation. For these channels no significant change is neces-
sary and none occurs; thus the very big effective time constants
(148,000) are harmless. Notice also that the normal beam—-forming
vector, 9, has most of its weight in the noise channels and that they
contribute most of the ultimate output signal, A(x).

This case was simulated for 1000 independent sample vectors from
all sources. Table 2 lists theoretical and experimental output S/I
histories. The experimental S/I is obtained by taking the weight
vector, w, at any instant (sample) in the course of the simulation and

evaluating it with the formula

*,2
%=Lwr_i__, (28)

Table 2

S/I HISTORIES FOR CASE EG3A

t Theory Simulation
0 11.6 11.6

50 34.3 30.2

100 54.5 48.6

150 57.9 53.1

200 58.0 55.9

250 58.0 57.2
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The weight vector, w, fluctuates slowly. A snapshot of w, after the
systém has settled, yields a random vector whose expected value is V.
It is therefore appropriate to compare Eq. (28) with the theoretical
S/1, omitting the effects of weight fluctuations. To verify the
slight extra degradation caused by the weight fluctuations, the values
of Eq. (28) for a series of samples should be used to estimate the
additional noise component.* This has not been done.

The theoretical output S/I is 58.3 dB for this case if the weights
are fixed at their ultimate average values. Weight fluctuation for
this case introduces a theoretical degradation of 0.5 dB, giving the
estimate of 57.8 dB for performance after settling. Between saﬁples
250 and 1000, snapshots were taken every 50 samples. The range of
S/I was from 57.1 to 58.1 dB.

CASE EF5A

The array consists of six elements. Three are equally spaced
around a circle of radius 0.6 wavelength, with a fourth at the center.
The remaining two lie at 0.5 wavelength intervalsg above the center.

The two tables which follow summarize computed and measured performance.

Table 3

NORMAL PARAMETERS FOR CASE EF5A

i T l,1? | Neg® | nE)E® | ae)e
1 18.9 8 0.175 3.3 T ] 0.000009
2 6.9 22 1.83 12.6 < 10 0.000264
3 3.6 42 0.045 0.16 0.000013
4 0.61 246 1.22 0.74 0.000002 | 0.0020

5 |0.0144 9767 0.066 0.00095 0.000004 | 0.0043

6 0.000010 | 149,000 2.67 0.000026 | 0.000026 2.64

*
It should be possible to estimate this from the set of S/I
achieved with the last n snapshots taken. See your statistician.
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Table 4

S/I HISTORIES FOR CASE EF5A

t Theory Simulation
0] 3.3 3.3
50 13.8 13.2
100 15.8 15.6
200 18.6 18.4
400 24.7 24.6
800 35.8 36.0

Optimum, fixed weights for this case yield output S/I of 54.4 dB.
If the weights were fixed at the theoretical mean to which they con-
verge for g = 1000, output S/I would be 53.4 dB. The fluctuations of
the weights theoretically cause about another 0.4 dB loss. This case

was not run long enough to approach limiting performance.

CASE DD4

This case differs from EF5A only in that noise power per channel
is 10_6, gain is 10,000, and filter time constant is 1,500,000. The
simulation was run for 25,000 steps, which allows the lengthy compari-
son of Table 5. The characteristic values and other normal parameters
are similar to those for case EF5A, except for the last, or noise,
channel, for which T = 1,500,000.

Table 5

S/1I HISTORIES FOR CASE DD4

t Theory Simulation
0 3.3 3.3

20 9.0 8.0
40 12.8 12.8

60 14.5 13.8

80 15.2 14.5
100 15.8 14.4
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Table 5 (Cont'd)

t Theory | Simulation
3000 40.6
3200 41.5
6000 43.0
6400 44,1

12,800 49,3
15,000 50.0
25,000 59.0
25,600 59.1
51,200 68.3

For this case the optimum performance possible is around 69 dB.
Allowing for the finite gain, the expected value for the weight vector
would give S/I = 68.4 dB.

CASE ED5A

In the preceding three examples there have been more adaptive
channels than independent interfering sources. The present case
retains the interference configuration of the. other three; however,
the array is reduced to four elements. Three elements are equally
spaced on a circle of radius 0.5 wavelength, with the fourth at the
center,

The parameters in normal coordinates are given in Table 6.

Table 6

NORMAL PARAMETERS FOR. CASE ED5SA

' 2 2 2
i oy T la, | N(o)/g" | N=) /g~ | A(=)/g
1 9.9 15 0.52 5.2 0.000053
2 5.1 29 0.000062 | 0.00032 < 10-6 0.000000
3 4.5 33 0.78 3.5 0.000173
4 0.53 285 2.7 1.42 0.0000054 [0.005138
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Theoretical optimum S/I is 7.3 dB. Computed and simulated S,

histories are given in Table 7.

Table 7

S/1 HISTORIES FOR CASE ED5A

t Theory Simulation
0 2.0 2.0

25 6.0

50 7.1 6.8

100 7.2 7.1

From Table 6 it is apparent that significant interference reduction
occurs in all four normalized channels. The poor performance possible
in this case is achieved early, however, since it occurs by the time
the activity in channels 2 and 3 has begun to settle down.

The tables of normal parameters can be used to make rough estimates
of settling times. Consider the columms N(o)/g2 and N(w)/gz, which give
the initial and ultimate interference-plus-noise contributions for each
normal channel., If one determines which channels experience a signifi-
cant reduction in N, then their effective time constants, T;, are the
only ones influencing the overall settling time. 1In case EG5A only
time constants up to 73 matter; hence settling should occur in a few
multiples of 73 steps. The simulation had about 56 dB of a possible
58.3 in 200 steps. In case EF5A the N for channel 5 has to be reduced
by a factor of about 250 to approach the theoretical performance. Thus
action is required in a channel whose effective time constant is near
10,000. The DD4 case, which had similar normal parameters, took about
20,000 samples to get to the performance limit (DD4 had N = 10_6, so
its ultimate performance was better than that of the EF5A case) for

the EF5A case.
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VI. CHOOSING Tt AND g: SCHEME A

Equation (25) for the extra output noise due to slow fluctuations
in the weights may be used to choose either g or Tt to keep that excess
small. An examination of two extreme cases leads to a useful rule
which may be applied directly in the original coordinates. The two
extreme cases occur when (1) the power is equally divided among the
normal channels and (2) when one channel has all the power and the

remainder none.

CASE 1: ALL A, EQUAL

Let p denote the total power from all interfering sources and

channel noise and let c¢ be the number of channels; then I Ai = cp = cli
i
implies each Ai = p and the fractional excess noise is
2 2c c
. (29)

E= 2t(l+gp) = 2T

The last approximation requires gp >> 1, which will nearly always be

the case.

CASE 2: ONE BIG X

Put Al = I Ai = ¢cp and A2 = ,,, = 0; then

222
c c

E= 21'(1+gcp),~ 2t

(29)
just as for case 1. This coincidence suggests that Eq. (29) should be

a good general guide for choosing g and 1. 1If, for example, E is to
be less than 0.1, then Eq. (29) requires that

T
- > 5 pe . (30)
2 P
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Equation (30) can form the basis of a first attempt at an AGC
scheme. If the filter time constants have been fixed, Hq. (30) pro-
vides an upper limit on the allowable g. Values of g greatly above
this limit will lead to excessively short effective time constants
and excessive fluctuations in the weights. The total channel power p
can be estimated by putting a square law envelope detector on one

channel and smoothing its output.
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VII. THE W SCHEME: 1ITS EQUATIONS AND WEIGHT DRIFT DURING ADAPTATION

Widrow, et aZ.(3) discuss a number of variations of an adaptive
array scheme. The one discussed in thie section is a simple variation
that is similar, in some respects, to the A scheme. Consider this

block diagram:

u =8r +n

Symbols and notation are the same as for the A scheme, However, it is
now supposed that the array contains a pilot contribution, dr, and that
a magnified and phase-shifted replica, y§, is known. The pilot modula-
tion (including the case of no modulation) is represented by &8, while

r = (rl, cees rc), as before, accounts for the relative magnitudes and
phases of the pilot contributions in the ¢ channels. n denotes the
rest of the channel activity, interference plus noise. As for the A
scheme, it is assumed that no information signal from the desired
source is present in the adaptive loops.

%
From inspection of the sketch, the weight vector w satisfies
-1 * * *
S w =ug(y§-uw ) . (31)

Following the same line of argument as for the A scheme leads to sim—
ilar results for the mean weight drift during adaptation and for the
equation determining the ultimate equilibrium weights. For the mean

weight drift,
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-]~ * %
S w =glypr - Cw) , (32)

where p = E{IGIZ} is the pilot power and
* *
C=E{uul=prr+M (33)

is the channel covariance matrix. Note that C is the interferencé co-
variance matrix plus a contribution due to the pilot signal.

Since C is Hermitian and positive definite also (channel noise,
for example, never vanishes), a unitary transformation, Q, and a set
of characteristic numbers Hy exist for which C = Q diag {ui}Q*. If

the quantities involved are transformed to normal coordinates,

w=v Q=g wQ =y,

then Eq. (32) reduces to the c independent equations

-1~

S Ty; = slypay - Wy,
whose solutions for single time constant smoothing are
-(l4gu)t

8YPq,
Y17 I4gy,

1-e T . (34)

The filters are assumed to be initially empty; hence y(o) = 0. This

accounts for the negative sign in Eq. (34). It is interesting to com-
pare the forms of Eqs. (14) and (34). ©Notice, however, that the char-
acteristic numbers, Wy in Eq. (34) are different from the character-

igstic numbers, A,, in Eq. (14). If the interference environments are

the same for theiA and W schemes, one would expect all the My to be
slightly greater than the corresponding Ai because of the added pilot
contribution, and if the number of channels exceeds the number of
independent sources, then one would expect there to be one less '"noise"

channel for the matrix C in the W scheme than for the matrix M.
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In order for the weights to behave anything like Eq. (34), it is
necessary that the smoothing be sufficiently great so that the effec-
tive time constants, (1+gui)/Tg ire greaier than thé time necessary
to obtain a good estimate of F{u §} = pr . Otherwise, instead of the
term ypr* in Eq. (32) there should be a term of the form f(t)r*,
representing the gradual build—-up of this reference. This topic is
discussed further after some examples.

For the ultimate equilibrium weights, Eq. (32) implies

—% * *x % -%
w =g(ypr - prrw - Mw)

or
-1 —% * —*
(g IT+Mw =pr (y ~rw ) . (35)

Since the parenthesis on the right-hand side is a complex scalar, Eq.
—

(35) implies that as g -+ « the solution w tends to a value propor-

tional to the ideal weights given by Eq. (4). Thus, if the smoothing

and gain are great enough the W scheme approaches ideal performance.
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VIII. COMPARISON OF A AND W SCHEMES

Some idea of what to expect may be had by comparing the basic

equations for the two schemes. It is clear that both

* x %
r - S(u uw ) (6)

A: g w

and

i}

W ek = ys@te) - s ) (31)
schemes are continuously estimating the channel covariance matrix,
since for adequate smoothing S(u*uw*)ss S(u*u)ﬁ*. For the A scheme,
S(u*u) approximates M, the channel covariance matrix for interference
only. For the W scheme, S(u*u) approximates pr*r 4+ M, which is a
covariance matrix for one more source. If M has rank less than c and
the desired signal is not on a ray to one of the interferers, then
pr*r + M has rank ¢ + 1 and it would appear that the W scheme has a
more difficult task.

A more important difference, however, is in the first term. Since
S(u*é) approximates pr*, the W scheme is also using the known pilot to
estimate r*, a vector supplied cleanly in the A scheme, If the inter-
ference is very heavy, the fluctuations n*6 in u*6 = G*Sr* + n*G will
be very great and much more smoothing will be required to produce a
clean enough estimate of r*.

It is interesting to note that one method of operation proposed
in Ref. 3 for a W scheme is to connect the input channels alternately
to the real world and to a synthesized, clean, beam-forming signal,

%
ar , while applying a and zero alternately to the pilot input terminal

(where y6 enters in the sketch on p. 20). The above comparison sug-
gists that if the extra effort of generating the beam-forming vector
r 1is to be expended, it might be simpler and better to use the A
scheme directly. The main advantage of the W scheme is its ability
to estimate r* when provided only with a pilot signal.

The following example provides one illustration of the convergence

of both the A and W schemes under similar conditions. The behavior of
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the W scheme is given for several pilot levels. For comparison, the
A scheme was run at several values of 1, the idea being that for a
fair comparison one should use a 1 that leads to abéut the same ulti-
mate fluctuation in S/I values about their equilibrium value. All the
W cases settled down to S/I of about 46.7 dB while the A cases settled
somewhat higher. The times given below are those to cross the S/I =
43.7 dB level (3 dB from W scheme's asymptote). Both examples are for
the source and element configuration of case EG5A on p. 12. The chan~-
nel noise was 10—4 in both cases. Other pertinent parameters are as
follows.

W scheme: <t = 5M, g = 50K, local pilot always inserted at unity
power level. Incoming pilot signal at levels 10, 1, 0.1, and 0.01
relative to power in each of five interferers.

A scheme: g = 10K, v = 0.5M, 1M, and 2M for three A cases. The
T that produce the same eventual S/I fluctuation as the W cases is

somewhere between 1M and 2M.

Table 8

COMPARISON OF A AND W SCHEMES

W Scheme A Scheme
Pilot Power T
Item 10 1 0.1 0.01 0.5M M 2M
Time to reach 43.7 dB,
sample units 155 175 570 4200 56 82 160
Ultimate S/I fluctua-
tion, dB 1.5 1.4 0.8 1.6 2.2 1.1 0.4

. The results in Table 8 demonstrate the importance of pilot power
in determining the settling time of the W scheme. Some light is shed
on this by considering the ratio of the useful reference power to the
fluctuation power in the term u*G = S*Sr* + n*s. If i is the total
interference power, then the pilot-to-interference ratio is p/i. In
order for the W scheme to settle down, u*é needs sufficient smoothing
to produce E{u*S} a:pr* with an acceptable level of residual fluctua-

tion. The number of independent samples tc be smoothed in order to
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reach a given output p/i varies inversely with the pilot power, p.
This relationship seems to be roughly followed for the lower levels
of p in Table 8.

The fluctuations about eventual equilibrium for the W cases are
all in the 1 to 1.5 dB range, so a fair comparison A case would be one
with T about 0.8M, for which the time to reach 43.7 dB would be about
78. 1In this example the A scheme is two or three times as fast as the
W scheme, depending on what pilot-to-interference ratio one considers

practical.



-26-

REFERENCES

Gantmacher, F. R., Matrix Theory, Vol. 1, Chelsea Publishers, New
York, 1959,

Applebaum, S. P., Adaptive Arrays, Syracuse University Research
Corporation, Report SPL709, June 1966.

Widrow, B., P. E. Mantey, L. J. Griffiths, and B. B. Goode,
"Adaptive Antenna Systems,'" Proc. IEEE, December 1967, p. 2143.



